PROVINCIA DI UDINE COMUNE DI COSEANO

STUDIO DI INVARIANZA IDRAULICA

ZONA D2 -INDUSTRIALE E ARTIGIANALE DI INTERESSE COMPRENSORIALE PIP PIANO PER INSEDIAMENTI PRODUTTIVI

Enrico Massolino – Geologo Tel 3406184630 Via Settefontane 29 34141 Trieste P.IVA. 01137470322 enrico.massolino@gmail.com www.studiomassolino.com

Sommario

١.	PREMESSA	3
2.	INQUADRAMENTO NORMATIVO	3
3.	DESCRIZIONE DELLE AREE	5
4.	CALCOLO DEI COEFFICIENTI Ψ E Ψ MEDIO ANTE - POST OPERAM	7
5.	ENTE GESTORE	8
6.	INTERAZIONI CON IL SISTEMA DI DRENAGGIO.	8
7.	DESCRIZIONE DELLE MISURE COMPENSATIVE PROPOSTE	9
8.	PIANO DI MANUTENZIONE	10
9.	COEFFICIENTI PLUVIOMETRICI	11
10.	ASSEVERAZIONI DI NON SIGNIFICATIVITA'	13
11.	AREA 6 LIVELLO DI SIGNIFICATIVITA' MODERATO	14
12.	AREA 8 LIVELLO DI SIGNIFICATIVITA' MEDIO	18
13.	AREA 9 LIVELLO DI SIGNIFICATIVITA' MODERATO	22
14.	AREA 10 LIVELLO DI SIGNIFICATIVITA' CONTENUTO	26
15.	CONCLUSIONI	29
	ıra 1 Tabella trasformazioni urbanistico – territoriali	
	ıra 2 Planimetria variazioni P.I.P. 1/10000	
•	ıra 3 Tabella Significatività delle modifiche	
_	ıra 4 Coefficienti di afflusso	
Figu	ıra 5 Coefficienti di permeabilità indicativi	9
Figu	ıra 6 Rain Map FVG	12
Figu	ıra 7 RainMap	12
Figu	ıra 8 Asseverazione di non significatività	13
Figu	ıra 9 Schema dispersore	16
Figu	ıra 10 Schema dispersore	20
Figu	ıra 11 Schema dispersore	24
Figu	ıra 12 Schema dispersore	27

STUDIO DI INVARIANZA IDRAULICA - COMUNE DI COSEANO - PIANO INSEDIAMETI PRODUTTIVI

I. PREMESSA.

Il presente studio di compatibilità idraulica viene redatto per una zona D2 - Industriale E

Artigianale di Interesse Comprensoriale nel Comune di Coseano per la definizione di un PIP

Piano per Insediamenti Produttivi.

Lo studio si articola secondo il "Regolamento recante disposizioni per l'applicazione del principio

dell'invarianza idraulica di cui all'articolo 14, comma 1, lettera k) della legge regionale 29 aprile

2015, n. 11 (Disciplina organica in materia di difesa del suolo e di utilizzazione delle acque)".

Il lavoro è stato eseguito nei mesi di marzo e aprile 2024 ed ha previsto un'analisi critica delle

zone interessate dal presente Piano

Il presente lavoro viene redatto secondo i contenuti del documento "Metodi e criteri per

l'applicazione del principio dell'invarianza idraulica nella Regione Friuli Venezia Giulia".

Per le problematiche inerenti la pericolosità e rischio idraulico si fa riferimento al P.G.R.A. Piano

di Gestione del Rischio di Alluvioni, Autorità di bacino distrettuale delle Alpi Orientali.

Per la realizzazione di questo studio si é fatto riferimento ai dati forniti dal servizio Geologico

della Regione FVG.

2. INQUADRAMENTO NORMATIVO

Nel Regolamento recante disposizioni per l'applicazione del principio dell'invarianza idraulica di

cui all'articolo 14, comma 1, lettera k) della legge regionale 29 aprile 2015, n. 11 (Disciplina

organica in materia di difesa del suolo e di utilizzazione delle acque) vengono riportati gli ambiti

di applicazione del regolamento:

AMBITO DI APPLICAZIONE Art. 2

Sono soggetti al presente regolamento le seguenti tipologie di trasformazione del territorio

regionale che incidono sul regime idrologico e idraulico:

a) gli strumenti urbanistici comunali generali e loro varianti, qualora comportino trasformazioni

urbanistico-territoriali e necessitino del parere geologico di cui alla legge regionale 9 maggio

1988, n. 27 (Norme sull'osservanza delle disposizioni sismiche ed attuazione dell'articolo 20 della

legge 10 dicembre 1981, n. 741), le cui disposizioni continuano ad applicarsi fino all'adozione dei

provvedimenti attuativi indicati all'articolo 3, commi 2, 3 e 4 e all'articolo 17 della legge regionale

II agosto 2009, n. 16 (Norme per la costruzione in zona sismica e per la tutela fisica del

territorio);

b) i piani territoriali infraregionali inclusi i piani regolatori portuali i piani regolatori

particolareggiati comunali ovvero i piani attuativi comunali, qualora comportino trasformazioni

urbanistico territoriali;

Viden www

c) i progetti degli interventi edilizi soggetti al rilascio di titolo abilitativo nonché quelli subordinati a segnalazione certificata di inizio attività - SCIA di cui all'articolo 17 della legge regionale 11 novembre 2009, n. 19 (Codice regionale dell'edilizia) in alternativa al permesso di costruire di cui all'articolo 18 della medesima legge regionale 19/2009;

Vengono inoltre riportati i diversi livelli di studio e di azione in relazione al tipo di intervento proposto:

	Trasformazioni urbanistico - territoriali							
Livello di	Estensione della superficie di	Interventi di mitigazione e tipo di analisi per la						
significatività	riferimento S e valore del	determinazione del volume minimo di invaso						
della trasformazione	coefficiente Ψ medio							
NON	S ≤ 500 mq	E' raccomandato l'utilizzo di buone pratiche costruttive						
SIGNIFICATIVO oppure	oppure	Lo studio di compatibilità idraulica è sostituito da						
TRASCURABILE	S > 500 mq e Ψ medio	asseverazione.						
art. 5, c. 3	rimane costante o							
	diminuisce oppure scarico							
	diretto a mare, laguna,							
		E' obbligatorio l'utilizzo delle buone pratiche costruttive						
		E' obbligatorio lo studio di compatibilità idraulica in forma						
	500 < S ≤ 1000	semplificata:						
CONTENUTO		non sono obbligatori i volumi di invaso per soddisfare						
		l'invarianza idraulica e vanno descritti gli interventi						
		mitigatori introdotti (ad es. buone pratiche costruttive)						
MODERATO	1000 mq < S ≤ 5000 mq	E' obbligatorio l'utilizzo delle buone pratiche costruttive						
		E' obbligatorio lo studio di compatibilità idraulica con la						
		determinazione dei volumi di invaso utilizzando la soluzione						
		più conservativa tra due dei proposti metodi di calcolo						
		idrologico-idraulico scelti a piacere:						
		-Metodo dell'invaso italiano diretto						
		-Metodo del serbatoio lineare (Paoletti-Rege Gianas, 1979)						
		- Modello delle sole piogge						
MEDIO	0.5 ha < S ≤ 1 ha	E' obbligatorio l'utilizzo delle buone pratiche costruttive.						
		E' obbligatorio lo studio di compatibilità idraulica con la						
		determinazione dei volumi di invaso utilizzando la soluzione						
		più conservativa tra due dei proposti metodi di calcolo						
		idrologico - idraulico scelti a piacere:						
		Metodo del serbatoio lineare (Paoletti-Rege Gianas, 1979).						
		Metodo del serbatolo lineare (Paoletti-Rege Glands, 1979). Metodo cinematico o della corrivazione (Alfonsi-Orsi, 1967).						
		Modello delle sole piogge.						
		modelio delle sole piogge.						

4

3. DESCRIZIONE DELLE AREE

Il Piano prevede delle modifiche da destinazione Industriale a Agricolo o che prevedono una diminuzione dei coefficienti di afflusso. Alcune aree Industriali vengono destinate Servizi con destinazione a Verde. Una parte del Piano prevede il completamento della viabilità.

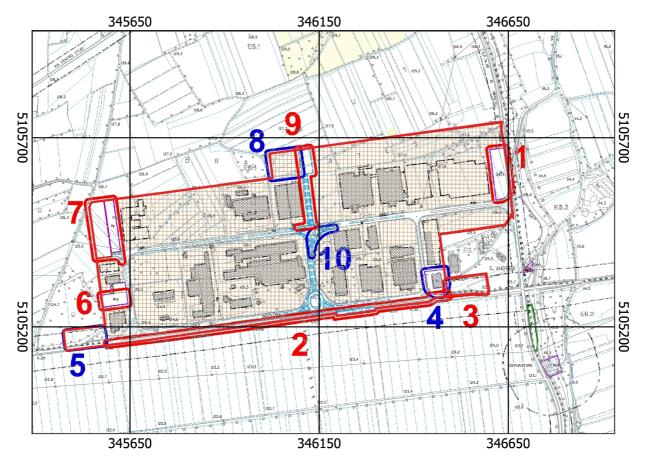


Figura 2 Planimetria variazioni P.I.P. 1/10000

STUDIO DI INVARIANZA IDRAULICA - COMUNE DI COSEANO - PIANO INSEDIAMETI PRODUTTIVI

N°	DA	A	Commento	Mq	Significatività
I	D2 Zona Industriale/artigianale di interesse comprensoriale; Zona S; servizi e attrezzature collettive		Trasformazione di un area a destinazione industriale in un area S Servizi da destinarsi a Verde con una diminuzione dei coefficienti di afflusso previsti.	5425	Non significativo
2	indicazione di Perimetro Piano Pa	articolareggiato ridefinita;			
3	D2 Zona Industriale/artigianale di interesse comprensoriale	E6.1 Ambito di interesse agricolo;	Diminuzione dei coefficienti di afflusso previsti.	2066	Non significativo
4	D2 Zona Industriale/artigianale di interesse comprensoriale	Zona S; servizi e attrezzature collettive	Zona di Servizi ristorativi e direzionali	3211	Non significativo
5	indicazione di limite di rispetto st indicazione di zona E6.1 Ambito d				
6	Zona D2 Zona Industriale/artigianale di interesse comprensoriale	Zona S; servizi e attrezzature collettive	Piazzola ecologica- centro di raccolta	2183	Moderato
7	Zona D2 Zona Industriale/artigianale di interesse comprensoriale	Zona E6.1 Ambito di interesse agricolo;	Diminuzione dei coefficienti di afflusso previsti.	6316	Non significativo
	D2 Zona Industriale/artigianale di interesse comprensoriale	Zona S; servizi e attrezzature collettive	Zona servizi da destinarsi a Verde. Diminuzione dei coefficienti di afflusso previsti.	3512	Non significativo
	Zona D2 Zona Industriale/artigianale di interesse comprensoriale	Viabilità di progetto;	Realizzazione di Viabilità	352	Non significativo
8	Zona E6.1 Ambito di interesse agricolo;	Zona D2 Zona Industriale/artigianale di interesse comprensoriale		5136	Medio
9	Zona D2 Zona Industriale/artigianale di interesse comprensoriale	Viabilità di progetto;	Realizzazione di una nuova viabilità	4643	Moderato
	Zona D2 Zona Industriale/artigianale di interesse comprensoriale Tabella Significatività delle modifiche	Viabilità di progetto;	Realizzazione di un incrocio e ampliamento di una strada.	937	Contenuto

Figura 3 Tabella Significatività delle modifiche

4. CALCOLO DEI COEFFICIENTI Ψ E Ψ MEDIO ANTE - POST OPERAM

Per quanto riguarda i valori dei coefficienti di afflusso Ψ , ipotizzando per semplicità di trascurare il grado di saturazione del terreno che varia al durare della pioggia, viene seguita la regola che prevede di adottare valori più modesti nel caso di superfici pianeggianti e terreni permeabili, e valori più elevati nel caso di superfici pendenti e meno permeabili. Si assume, per semplicità, che Ψ non vari con la durata della precipitazione. I terreni in questione sono ghiaiosi come risulta dalla relazione geologica allegata alla variante.

Nel caso di superficie interessata da differenti usi del suolo allora si considera il coefficiente di afflusso medio ponderale Ψ_{medio}

$$\Psi_{medio} = (\Psi_1 \cdot S_1 + \Psi_2 \cdot S_2 + ... + \Psi_n \cdot S_n) / S = \frac{\sum_{i=1}^n \Psi_i \cdot S_i}{S}$$

dove: $S = S_1 + S_2 + ... S_n$ ed il coefficiente Ψ_i è riferito all'area S_i

Di seguito viene riportata la stima dei coefficienti di afflusso pre e post trasformazione facendo riferimento alle tabelle riportate nel regolamento di invarianza idraulica.

TABELLA DEI VALORI DI RIFERIMENTO DEI COEFFICIENTI DI AFFLUSSO ψ DA UTILIZZARE NEI METODI DI CALCOLO

Uso del suolo	Ψ		
Tetti a falde	0.90-1.00		
Tetti metallici	0.90-1.00		
Tetti a tegole	0.80-0.90		
Tetti piani con rivestimento in cls	0.70-0.80		
Tetti piani ricoperti di terra	0.30-0.40		
Coperture piane con ghiaietto	0.80-0.90		
Coperture piane seminate ad erba	0.20-0.30		
Rivestimenti bituminosi	0.90-1.00		
Pavimentazioni asfaltate	0.80-0.90		
Pavimentazioni con asfalto poroso	0.40-0.50		
Massicciata in strade ordinarie	0.40-0.80		
Pavimentazioni di pietra o mattonelle	0.80-0.90		
Lastricature miste, clinker, piastrelle	0.70-0.80		
Lastricature medio-grandi con fughe aperte	0.60-0.70		
Strade e marciapiedi	0.80-0.90		
Superfici semi-permeabili (es. parcheggi grigliati drenanti)	0.60-0.70		
Strade in terra	0.40-0.60		
Rivestimenti drenanti, superfici a ghiaietto	0.40-0.50		
Viali e superfici inghiaiate	0.20-0.60		
Zone con ghiaia non compressa	0.10-0.30		
Superfici boscate	0.10-0.30		
Superfici di giardini e cimiteri	0.10-0.30		
Prati di campi sportivi	0.10-0.20		
Terreni coltivati	0.20-0.60		
Terreni incolti,	0.20, 0.20		
sterrati non compatti	0.20-0.30		

Uso del suolo	Ψ
Prati, pascoli	0.10-0.50
Tipologia urbana	
Costruzioni dense	0.80-0.90
Costruzioni spaziate	0.70-0.80
Aree con grandi cortili e giardini	0.50-0.60
Quartieri urbani con fabbricati radi	0.30-0.50
Zone a villini	0.30-0.40
Giardini, prati e zone non destinate a	0.20-0.30
costruzioni e a strade	0.20-0.30
Parchi e boschi	0.10-0.20

Figura 4 Coefficienti di afflusso

5. ENTE GESTORE

Il comune di Coseano rientra fra i Comuni interessati dal consorzio di Bonifica della Pianura Friulana a cui richiedere parere nel caso di intervento edilizio art.2 c.1 lettere c) d). D. P. Reg. 27 marzo 2018 n. 83.

Nel caso di utilizzo esclusivo di dispositivi idraulici finalizzati a favorire l'infiltrazione dell'acqua nel sottosuolo l'Ente gestore è il gestore del corpo idrico che recapita le acque provenienti dalla "superficie di riferimento" prima della trasformazione.

Il consorzio di bonifica definisce ai fini dell'applicazione del principio di invarianza idraulica dei coefficienti udometrici da adottare in condizioni ordinarie nello studio di compatibilità idraulica.

Il comune di Coseano è servito dal CAFC che nel suo regolamento di fognatura riporta:

Art 22/1 Gli scarichi delle acque bianche, provenienti da insediamenti isolati sia residenziali sia di servizi, di qualsiasi dimensione, devono di norma essere convogliati nei corsi d'acqua superficiali ovvero, dove non tecnicamente realizzabile o eccessivamente oneroso, essere dispersi sul suolo o negli strati superficiali del sottosuolo, fatti salvi i diritti di terzi. Le acque bianche provenienti da edifici di nuova realizzazione o soggetti a interventi edilizi, ubicati nei centri abitati, dovranno essere convogliate in corsi d'acqua superficiali o disperse sul suolo o negli strati superficiali del sottosuolo, qualora ciò risulti eccessivamente oneroso o tecnicamente non realizzabile, scaricate in rete fognaria.

In relazione alle caratteristiche dell'intervento qualora vi sia un effettivo utilizzo industriale delle aree scoperte devono essere previsti dei sistemi di raccolta e trattamento delle acque di prima pioggia.

6. INTERAZIONI CON IL SISTEMA DI DRENAGGIO.

Il sistema di drenaggio più prossimo è costituito dal torrente Corno è piuttosto delicato per le sue aree a pericolosità idraulica. La diffusa presenza di terreni molto permeabili rende possibile la dispersione nel sottosuolo senza eccessivi volumi di invaso e senza gravare sul sistema di drenaggio esistente. Per tale motivo verrà utilizzata in massima parte la dispersione al suolo con dei fossati, che risultano il dispositivo più semplice e funzionale per ottenere sia un elevato volume di laminazione che una buona superficie di dispersione.

7. DESCRIZIONE DELLE MISURE COMPENSATIVE PROPOSTE

I dispositivi idraulici sono sistemi di infiltrazione facilitata per lo smaltimento di acque di origine meteorica che non necessitano di un trattamento e sono da adottarsi come misura complementare ai fini della laminazione delle piene in particolare nelle zone non soggette a rischio di inquinamento della falda e laddove tale soluzione progettuale possa essere ritenuta efficace e non provochi alterazioni idrogeologiche nel rispetto della vigente normativa ambientale. La soggiacenza minima della falda acquifera rispetto al piano campagna e la distanza della stessa dal fondo dell'opera disperdente deve essere pari ad almeno 2,0 m requisito sempre ampliamente soddisfatto nel territorio Comunale.

Per mantenere invariato il comportamento dei terreni pre intervento, si può valutare positivamente la realizzazione di dei dispositivi di dispersione superficiale o di subirrigazione che mantengano la continuità nell'attuale infiltrazione delle acque nei terreni permeabili.

Il definitivo calcolo dei sistemi di dispersione e laminazione verrà effettuato qualora maturi la necessità di una variazione dei coefficienti di afflusso considerando l'eventuale necessità di un trattamento di acque di prima pioggia.

L'estensione dell'area di variante comporta l'obbligatorietà dell'applicazione delle buone pratiche costruttive, come ad esempio la realizzazione di cunette vegetate e la realizzazione di tetti verdi e di cisterne, per la minimizzazione e la compensazione dell'impatto di ogni eventuale intervento. Per l'eventuale realizzazione di tali dispositivi in relazione alla variabilità della composizione del substrato, risulta necessario eseguire uno studio specifico per ogni intervento.

Sono previste quindi:

• Fossati, cunette filtranti (vegetate) e fasce di infiltrazione: sono strisce di terra generalmente vegetate e lievemente inclinate che gestiscono i volumi idrici in eccesso provenienti dalle vicine aree impermeabilizzate. Sono la soluzione più indicata ed economica nel territorio discretamente permeabile e pianeggiante.

Figura 5 Coefficienti di permeabilità indicativi

STUDIO DI INVARIANZA IDRAULICA – COMUNE DI COSEANO – PIANO INSEDIAMETI PRODUTTIVI

In relazione alle buone pratiche costruttive si può elencare ad esempio il mantenimento della

permeabilità delle zone adibite a parcheggio con pavimentazione drenante in ghiaia, geogriglie o

mattonelle opportunamente spaziate.

Il Comune di Coseano nel suo Piano Regolatore prevede che: La realizzazione di future opere di

urbanizzazione dovrà considerare che l'incremento delle aree rese impermeabili da asfalti,

manufatti e costruzioni, implicherà la diminuzione della superficie utile di assorbimento delle

acque meteoriche e, conseguentemente, un aumento del volume di deflusso superficiale che

sovraccarica la rete fognaria e la rete idrografica esistenti.

- Per ogni intervento urbanistico, al fine di ridurre l'impatto idraulico dello stesso, dovranno

essere applicate le prescrizioni generali di "invarianza idraulica" fra lo stato di fatto e lo stato di

progetto, illustrate nel capitolo "i" punto 5 del presente rapporto. Si dovrà favorire la

predisposizione di tecniche di stoccaggio temporaneo di acqua meteorica per il riutilizzo

successivo ai fini di irrigazione o altro.

Nel presente lavoro è stata prevista la possibilità di stoccare le acque per la zona 8 che prevede

una variazione da area Agricola a area D2. Non è stata inizialmente prevista la stessa possibilità

per il centro di raccolta che dovrà prevedere una raccolta separata delle acque di prima pioggia.

Lo stoccaggio ai fini del riutilizzo non è stato inoltre previsto per i tratti di viabilità da ampliare e

da realizzare.

8. PIANO DI MANUTENZIONE

Al fine di garantire un corretto funzionamento della rete di raccolta e smaltimento delle acque

meteoriche sarà fondamentale adottare un programma di manutenzione come di seguito

specificato:

Scadenza mensile: Pulizia delle aree ed in particolare delle griglie delle caditoie da fogliame, ghiaia

o detriti. Tale operazione deve concentrarsi in particolare nei periodi di forti piogge.

Scadenza trimestrale: Verificare il corretto funzionamento dei dispositivi limitatori di portata,

pulendo la griglia ed il foro di fondo della paratoia, e rimuovendo dal pozzetto eventuali depositi

di ghiaia, foglie o di qualsiasi tipo in particolare in concomitanza di periodi piovosi.

Scadenza semestrale: Ispezione visiva dei pozzetti e delle condotte; Pulizia delle caditoie;

Scadenza decennale: Pulizia delle condotte con mezzi meccanici dotati di elettropompa, per

l'intervento con getti d'acqua in pressione; (questa operazione è fondamentale per garantire il

mantenimento delle condizioni di funzionamento progettuali e per non aggravare il rischio

idraulico; questo intervento dovrà essere ripetuto ogni qualvolta dall'ispezione semestrale

risultassero depositi anomali lungo le condotte). Video ispezione delle condotte per accertare

anomalie, quali rotture, ostruzioni per depositi di detriti e sabbie.

Enrico Massolino – Geologo Tel 3406184630 Via Settefontane 29 34 14 | Trieste P.IVA. 0 | 137470322 STUDIO DI INVARIANZA IDRAULICA - COMUNE DI COSEANO - PIANO INSEDIAMETI PRODUTTIVI

9. COEFFICIENTI PLUVIOMETRICI

In relazione alla limitata estensione e all'assenza di variazione nei coefficienti di afflusso di alcune

delle aree per le quali si procede con l'asseverazione si utilizzano dei coefficienti pluviometrici

medi per la zona nord e per la zona sud.

Per la definizione dei volumi di invaso in relazione alla variazione della portata massima scaricata

si procede alla determinazione delle curve di possibilità pluviometrica con i coefficienti a, n, n'.

Viene utilizzato l'applicativo RainMap FVG

Lo studio di compatibilità idraulica relativo all'applicazione del principio dell'invarianza idraulica

viene di un'analisi pluviometrica all'interno della quale sono indicate le LSSP (Linee Segnalatrici di

Possibilità Pluviometrica).

Le LSPP possono essere riassunte nella seguente equazione:

h = a tn dove:

h = altezza della precipitazione attesa (mm)

a = coeff. pluviometrico orario (funzione del Tr ed espresso in mm/ora)

n = coefficiente di scala (assunto scala-invariante nel modello utilizzato)

t = durata della precipitazione (ore)

Il tempo di ritorno (Tr) delle piogge cui fare riferimento e da assumere negli studi idraulici di

dimensionamento delle opere viene definito pari a 50 anni. Tale valore, pur conservativo, è in

linea con quanto avviene in altre regioni italiane, e vuole tenere in conto particolarmente la

crescita dell'urbanizzazione ed i cambiamenti climatici in atto.

In caso di completa dispersione viene impostato un tempo di ritorno pari a 200 anni.

Nel caso di sistemi di drenaggio nei quali a causa della conformazione della rete drenante, si

debbano considerare piogge di durata inferiore a quella oraria (scrosci) si procede estrapolando i

necessari parametri dalle LSPP tarati sulle piogge di durata pari ad 1 ora: il coefficiente n va poi

moltiplicato per il valore 4/3 ovvero si ha: n' = n 4/3.

Enrico Massolino – Geologo Tel 3406184630

Via Settefontane 29 34 14 | Trieste P.IVA. 0 | 137470322

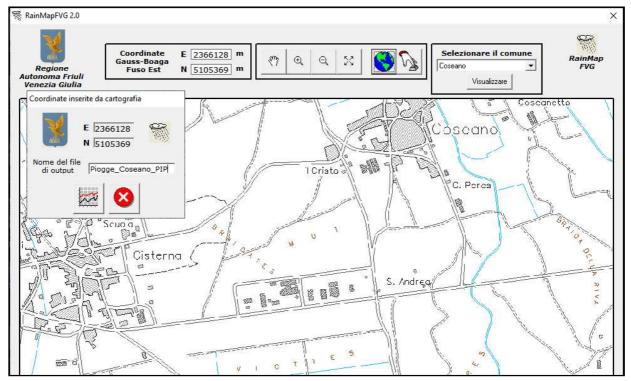


Figura 6 Rain Map FVG

LSPP Friuli Venezia Giulia															
Coor	Coordinate Gauss-Boaga Fuso Est							Parametri LSPP							
			Ε			N		n				0.27			
Input		2	236612	8	5	10536	9			7	empo d	li ritorn	o (Anni	i)	
Baricentro	cella	2	236625	0	45	10525	0		2	5	10	20	50	100	200
								а	37.1	50.5	60.2	70.0	83.7	94.8	106.4
	Р	recip	itazio	ni (m	m)					Precip	oitazio	ni (mn	n)		
Durata (Un)		Te	етро с	li ritor	no (An	ni)		Durata (Hr)		7	empo d	li ritorn	o (Anni	j)	
Durata (Hr)	2	5	10	20	50	100	200	Durata (FIF)	2	5	10	20	50	100	200
1	37.1	50.5	60.2	70.0	83.7	94.8	106.4	13	75.0	102.0	121.5	141.4	169.0	191.3	214.8
2	44.9	61.1	72.8	84.7	101.2	114.6	128.7	14	76.5	104.1	124.0	144.3	172.5	195.2	219.2
3	50.2	68.3	81.3	94.6	113.1	128.0	143.8	15	78.0	106.1	126.3	147.0	175.8	198.9	223.4
4	54.3	73.9	88.0	102.4	122.4	138.5	155.6	16	79.3	108.0	128.6	149.6	178.9	202.5	227.4
5	57.7	78.5	93.5	108.8	130.1	147.2	165.4	17	80.7	109.8	130.7	152.1	181.9	205.9	231.2
6	60.7	82.6	98.3	114.4	136.8	154.8	173.8	18	81.9	111.5	132.8	154.5	184.8	209.1	234.9
7	63.3	86.1	102.5	119.3	142.7	161.5	181.3	19	83.2	113.2	134.8	156.8	187.5	212.2	238.4
8	65.6	89.3	106.4	123.8	148.0	167.5	188.1	20	84.3	114.8	136.7	159.1	190.2	215.2	241.7
9	67.8	92.3	109.8	127.8	152.8	173.0	194.3	21	85.5	116.3	138.5	161.2	192.8	218.1	245.0
10	69.8	95.0	113.1	131.6	157.3	178.0	199.9	22	86.6	117.8	140.3	163.3	195.2	220.9	248.1
11	71.6	97.5	116.0	135.0	161.5	182.7	205.2	23	87.6	119.3	142.0	165.3	197.6	223.6	251.2
12	73.3	99.8	118.8	138.3	165.4	187.1	210.2	24	88.7	120.7	143.7	167.2	199.9	226.3	254.1

Figura 7 RainMap

10. ASSEVERAZIONI DI NON SIGNIFICATIVITA'

In alcuni casi lo Studio di compatibilità idraulica ai fini dell'invarianza idraulica è sostituito da asseverazione attestante che la trasformazione non è significativa ai fini dell'invarianza idraulica. La trasformazione è considerata non significativa, nei casi in cui:

- a) la superficie di riferimento S è inferiore od uguale alla superficie di riferimento SMIN ovvero S≤ SMIN;
- b) S è maggiore di SMIN e il coefficiente di afflusso medio ponderale rimane costante oppure si riduce a seguito della trasformazione;
- c) lo scarico delle acque meteoriche provenienti dalla superficie trasformata è recapitato direttamente a mare o in laguna o in altro corpo idrico recettore (laghi e bacini idrici che non svolgono funzione anti piena), il cui livello idrico non risulta influenzato in modo apprezzabile dagli apporti meteorici Alcune aree oggetto del P.I.P. risultano non significative per la limitata estensione come si può apprezzare dalla tabella di asseverazione riportata nelle successive pagine.

Si dichiara che le trasformazioni previste dalle aree di Variante PIP al PRGC di Coseano 1,3,4,7 non sono significative ai fini dell'invarianza idraulica in quanto presentano degli impatti trascurabili per superficie o per invariati coefficienti di afflusso, come riportato nella seguente tabella.

N°	ZONA DA	A	mq	T. Corr.	S< 500 mq o S>500 mq				Portata massima
IN				i. coii.	Art 5 C3 lettere b,c	Ψ pre	Ψ post	Sistema Di drenaggio	scaricata mc/s
- 1	d2	Zona S (verde)	5425	0.17	Art 5 C3 lettere b,c	0.6	0.4	Drenaggio superficiale	0.1570
3	D2	E6.1	2066	0.08	Art 5 C3 lettere b,c	0.6	0.3	Drenaggio superficiale	0.0696
4	D2	S (Servizi ricreativi e direzionali)	3211	0.08	Art 5 C3 lettere b,c	0.6	0.6	Drenaggio superficiale	0.2164
7.1	D2	E6.1	6316	0.17	Art 5 C3 lettere b,c	0.6	0.3	Drenaggio superficiale	0.1371
7.2	D2	Zona S (verde)	3512	0.07	Art 5 C3 lettere b,c	0.6	0.4	Drenaggio superficiale	0.2728
7.3	D2	Viabilità	352	0.08	S<=500	0.6	0.8	Drenaggio superficiale	0.0237

Figura 8 Asseverazione di non significatività

II. AREA 6 LIVELLO DI SIGNIFICATIVITA' MODERATO

La modifica consiste nell'ampliamento di un centro di raccolta.

AREA	DA	A	NOTE	MQ	ψPRE	ψPOST
6	D2	S	Centro di raccolta.	2183	0.6	0.9

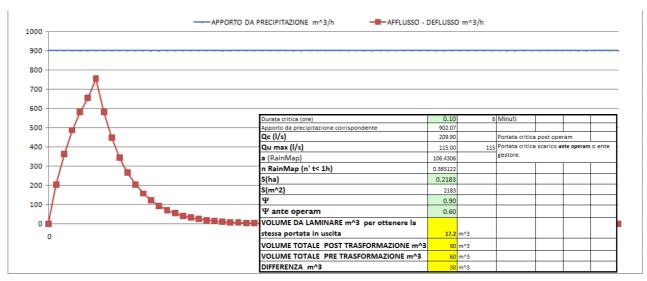
AREA 6 METODO DEL SERBATOIO LINEARE

Tale procedura si basa sull'ipotesi che il bacino a monte dell'invaso di laminazione si comporti come un invaso lineare e quindi che le portate in ingresso possano essere stimate mediante il modello dell'invaso.

Sono applicati degli ietogrammi netti di pioggia ad intensità costante.

L'equazione che regge il funzionamento del serbatoio è quella di continuità.

$$p dt - q dt = dW$$


Afflusso:

Deflusso:

$$q(t) = p \left(1 - e^{-\frac{t}{k}}\right) + q_0 e^{-\frac{t}{k}}$$
 $q(t) = q * e^{-\frac{t - t_p}{k}}$

L'area sottesa dalla curva corrisponde al volume totale della precipitazione ed è corrispondente a quanto calcolato con il metodo delle sole piogge.

Lo svuotamento dell'invaso di laminazione a portata costante Qu max durante la fase di colmo (laminazione ottimale).

Il volume da laminare considerando un coefficiente udometrico di 115 l/s risulta pari a 17 mc

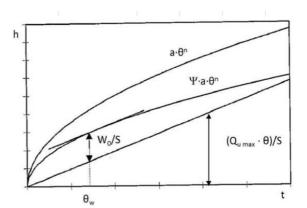
AREA 6 METODO DELLE SOLE PIOGGE

Tale modello si basa sul confronto tra la curva cumulata delle portate entranti e quella delle portate uscenti ipotizzando che sia trascurabile l'effetto della trasformazione afflussi-deflussi operata dal bacino e dalla rete drenante. In genere questo approccio tende pertanto a produrre valori cautelativi. Nelle condizioni sopra descritte, applicando uno ietogramma netto di pioggia ad intensità costante, il volume entrante prodotto dal bacino scolante risulta pari a:

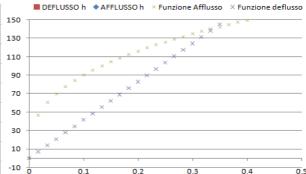
Volume entrante

 $W_a = S \cdot \Psi \cdot a \cdot \theta^n$

Volume uscente


 $W_{\mu} = Q_{\mu, max} \cdot \theta$

S = superficie di riferimento


Ψ = coeff. di afflusso POST OPERAM

a, n = coeff.ti della curva di possibilità pluviometrica

heta = durata critica della pioggia

Superficie di riferimento (Ha)	0.22
Superficie di riferimento (m^2)	2183
Coefficiente di afflusso post operam	0.90
Portata massima deflusso (I/s)	115.00
Tempo di ritorno (anni)	200.00
a=	106.43
n=	0.37
Volume massimo (m^3)	50.19
Durata critica della pioggia (h)	0.07

Risultati

Il volume massimo da destinarsi a laminazione risulta pari a 50.2 mc.

Tale valutazione è sufficientemente cautelativa per il metodo adottato che tende a sovrastimare i risultati ottenuti.

Il volume da destinare a laminazione risulta pari a 50.2 mc

SCHEMA DISPERSORE

Il calcolo delle geometrie viene semplificato per adattarsi alle approssimazioni nella realizzazione di questo tipo di dispersore.

Per motivi di sicurezza si prevede di impostare la profondità del fossato ad un metro.

E' previsto un fossato dispersore dalla lunghezza di 65 metri e dalla profondità massima di 1m.

L'eventuale volume da destinare alle acque di prima pioggia potrà essere sottratto ai volumi computati.

l lunghezza	65	m
b larghezza	2.5	m
t profondità	1	m
h altezza massima	1	m
M strato imp.	1	m
Volume	162.5	mc
Superficie	162.5	mq
K coefficiente di permeabilità terreno	1.00E-03	m/s
Capacità di infiltrazione	162.5	I/s

Figura 9 Schema dispersore

L'effettiva geometria potrà variare in sede di progettazione garantendo i volumi e la superficie del fondo del fossato calcolati.

Nelle tratte in cui fosse presente del terreno limoso- argilloso a profondità superiori al metro e mezzo questo dovrà essere scavato e sostituito col materiale ghiaioso presente nella maggior parte del lotto.

Come per i fossati la pendenza delle sponde dipende dalla composizione dei terreni, dall'inerbimento e dall'eventuale utilizzo di geotessuti.

AREA 6 TABELLA RIASSUNTIVA DI COMPATIBILITA' IDRAULICA

Tabella riassuntiva di compatibilità idraulica da app	
Descrizione della trasformazione oggetto dello	
Nome della trasformazione e sua descrizione	AREA 6 - Variante PIP Zona D2
Località, Comune, Provincia	Area Industriale San Andrea - Coseano -Udine
,	Area 6 da D2 a S (Centro di raccolta)
Tipologia della trasformazione	,
Presenza di altri pareri precedenti relativamente	No
all'invarianza idraulica sulla proposta trasformazione	
Descrizione delle caratteristiche dei luoghi	Corno
Bacino idrografico di riferimento	
Presenza di eventuali vincoli PAI – PGRA che interessano, in	Nessuno
parte o totalmente, la superficie di trasformazione S	F . 1
Sistema di drenaggio esistente	Fossi e canaline.
Sistema di drenaggio di valle	Torrente Corno
Ente gestore	Consorzio di Bonifica Pianura Friulana
Valutazione delle caratteristiche dei luoghi ai fini della d	
Coordinate geografiche (GB EST ed GB OVEST) del	2366128, 5105369
baricentro della superficie di trasformazione S oppure dei	
baricentri dei sottobacini nel caso di superfici di	
trasformazione molo ampie e complesse) per la quale viene	
fatta l'analisi pluviometrica (da applicativo RainMap FVG)	
Coefficienti della curva di possibilità pluviometrica (Tr=50	a= 106.4 n= 0.27 n' =0.37
anni, da applicativo RainMap FVG): a (mm/oran), n, n'	
Estensione della superficie di riferimento S espressa in ha	0.2183
Quota altimetrica media della superficie S (+ mslmm)	125
Valori coefficiente afflusso Y medio ANTE OPERAM (%)	0.6
Valori coefficiente afflusso Ymedio POST OPERAM (%)	0.9
Livello di significatività della trasformazione ai sensi dell'art.5	MODERATO
Portata unitaria massima ammessa allo scarico	QU=526I/s *ha
(l/s · ha) e portata totale massima ammessa allo scarico	QT=0.115 mc /s
(m3/s) dal sistema di drenaggio ai fini del rispetto	
dell'invarianza idraulica	
Descrizione delle misure compensative proposte	
Metodo idrologico-idraulico utilizzato per il	METODO SOLE PIOGGE
calcolo dei volumi compensativi	
Volume di invaso ottenuto con il metodo	50.2 MC
idrologico-idraulico utilizzato (m3)	
Volume di invaso di progetto ovvero volume che si intende	50.2 MC
adottare per la progettazione (m3)	
Dispositivi di compensazione	Fossati e canaline,
Dispositivi idraulici	Fossati e canaline. Eventualmente pozzi di
Dispositivi idi adilci	•
	dispersione.
Portata massima di scarico di progetto del sistema ed	La portata può essere dispersa nel
indicazione della tipologia del manufatto di scarico	sottosuolo tramite fossato.
Buone pratiche costruttive/buone pratiche	L'intervento, evitando inutili superfici
agricole	impermeabili, prevedrà la realizzazione di
	pozzi di dispersione e di fossati e canaline
	che permettono sia la dispersione che di
	disporre di un volume volano.
Descrizione complessiva dell'intervento di	L'intervento consta nell'ampliamento di un
mitigazione (opere di raccolta, convogliamento, invaso,	centro di raccolta.
infiltrazione e scarico) a seguito della proposta	Saranno possibili sistemi di trattamento delle
trasformazione con riferimento al piano	acque di prima pioggia.
di manutenzione delle opere	
NOTE	

12. AREA 8 LIVELLO DI SIGNIFICATIVITA' MEDIO

La modifica consiste nell'individuazione di una nuova area D2.

AREA	DA	A	NOTE	MQ	ψPRE	ψPOST
		zona D2 Zona				
	Zona E6.1 Ambito di	Industriale/artigianale di				
8	interesse agricolo;	interesse comprensoriale		5136	0.3	0.6

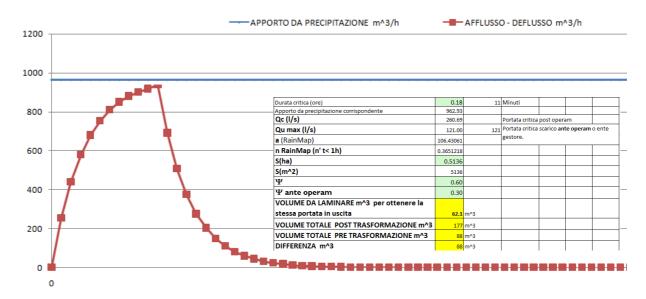
METODO DEL SERBATOIO LINEARE

Tale procedura si basa sull'ipotesi che il bacino a monte dell'invaso di laminazione si comporti come un invaso lineare e quindi che le portate in ingresso possano essere stimate mediante il modello dell'invaso.

Sono applicati degli ietogrammi netti di pioggia ad intensità costante

L'equazione che regge il funzionamento del serbatoio è quella di continuità.

$$p dt - q dt = dW$$


Afflusso:

Deflusso:

$$q(t) = p \left(1 - e^{-\frac{t}{k}}\right) + q_0 e^{-\frac{t}{k}}$$
 $q(t) = q * e^{-\frac{t - t_p}{k}}$

L'area sottesa dalla curva corrisponde al volume totale della precipitazione ed è corrispondente a quanto calcolato con il metodo delle sole piogge.

Lo svuotamento dell'invaso di laminazione a portata costante Qu max durante la fase di colmo (laminazione ottimale)

Il volume da laminare considerando un coefficiente udometrico di 121 l/s risulta pari a 62.1 mc

METODO DELLA CORRIVAZIONE O CINEMATICO

Il presente approccio ipotizza l'intero bacino come un sistema composto da tanti canali lineari disposti in parallelo ovvero si considerano prevalenti all'interno del bacino di scolo i fenomeni di traslazione dell'acqua: la schematizzazione del processo di trasformazione afflussi-deflussi nel bacino di monte è di tipo cinematico. Sulla base di questa impostazione Alfonsi e Orsi (1967) hanno sviluppato un metodo pratico per il calcolo del volume critico dell'invaso di laminazione nelle seguenti ipotesi semplificate:

- 1. ietogrammi netti di pioggia ad intensità costante
- 2. curva aree-tempi lineare
- 3. svuotamento a portata costante pari a Qmax (laminazione ottimale) Il volume W invasato può pertanto essere ottenuto in funzione della durata θ della pioggia, del tempo di corrivazione T0 del bacino, della portata massima uscente dall'invaso Qumax , del coefficiente di afflusso Ψ , della superficie di riferimento S e dei parametri pluviometrici a ed n:

METODO	CINEMATICO		(Alfonsi e	Orsi, 1967)		
letogramr	na netto di pioggia a in	tensità co	ostante (r	ettangolare)		
Curva are	ee tempi lineare;					
Svuotame	ento della vasca a porta	ata costa	nte pari a	Qu, (lamina	zione otti	male).
	Volume da laminare per ot	tenere la st	essa			
W (m^3)	portata uscente		76.79			
To (h)	Tempo di corrivazione			0.08	5.00	m
Qu (l/s)	Portata uscente			121		
Ψ	coefficiente di afflusso			0.6		
S (ha)	Area bacino			0.5136		
a	RainMap			106.43		
n-n'	RainMap			0.37		
To	Durata critica pioggia			0.18		
$W_{0} = 10 \cdot \Psi \cdot S \cdot \alpha \cdot \theta_{w}^{n} + 1.295 \cdot T_{0} \cdot Q_{u}^{2} \cdot \frac{\theta_{w}^{1-n}}{\Psi \cdot S \cdot \alpha} - 3.6 \cdot Q_{u} \cdot \theta_{w} - 3.6 \cdot Q_{u} \cdot T_{0}$						

Il volume da laminare per non superare la portata calcolata senza trasformazione dell'area corrisponde a 77 mc, valore confrontabile con quello calcolato con il metodo del serbatojo lineare.

SCHEMA VOLUME DI LAMINAZIONE - DISPERSORE

Se le attività lo consentono le acque di pioggia potranno essere accumulate prevedendo il loro riutilizzo per irrigazione o altro.

In tal caso il volume destinato all'accumulo dovrà essere preventivamente calcolato in sede di progetto a seconda del suo utilizzo e sottratto ai volumi della vasca volano- dispersore di seguito schematizzato.

Il calcolo delle geometrie viene semplificato per adattarsi alle approssimazioni nella realizzazione di questo tipo di dispersore.

Per motivi di sicurezza si prevede di impostare la profondità massima del fossato a un metro.

E' previsto un fossato dispersore dalla lunghezza di 50 metri e dalla profondità massima di 1 m.

L'eventuale volume da destinare alle acque di prima pioggia potrà essere sottratto ai volumi computati.

l lunghezza	50	m
b larghezza	2.5	m
t profondità	1	m
h altezza massima	1	m
M strato imp.	1	m
Volume	125	mc
Superficie	125.0	mq
K coefficiente di permeabilità terreno	1.00E-03	m/s
Capacità di infiltrazione	125.0	I/s

Figura 10 Schema dispersore

L'effettiva geometria potrà variare in sede di progettazione garantendo i volumi e la superficie del fondo del fossato calcolati.

Nelle tratte in cui fosse presente del terreno limoso- argilloso a profondità superiori al metro questo dovrà essere scavato e sostituito col materiale ghiaioso presente nella maggior parte del lotto.

Come per i fossati la pendenza delle sponde dipende dalla composizione dei terreni, dall'inerbimento e dall'eventuale utilizzo di geotessuti.

AREA 8 TABELLA RIASSUNTIVA DI COMPATIBILITA' IDRAULICA

AREA 6 TABELLA RIASSONTIVA DI COMPATIBILITA IDRAULICA					
Tabella riassuntiva di compatibilità idraulica da app					
Descrizione della trasformazione oggetto dello					
Nome della trasformazione e sua descrizione	AREA 8 - Variante PIP Zona D2				
Località, Comune, Provincia	Area Industriale San Andrea - Coseano -Udine				
Tipologia della trasformazione	Area 8 da E6.1 a D2				
Presenza di altri pareri precedenti relativamente	No				
all'invarianza idraulica sulla proposta trasformazione					
Descrizione delle caratteristiche dei luoghi					
Bacino idrografico di riferimento	Corno				
Presenza di eventuali vincoli PAI – PGRA che interessano, in	Nessuno				
parte o totalmente, la superficie di trasformazione S					
Sistema di drenaggio esistente	Fossi e canaline.				
Sistema di drenaggio di valle	Torrente Corno				
Ente gestore	Consorzio di Bonifica Pianura Friulana				
Valutazione delle caratteristiche dei luoghi ai fini della d					
Coordinate geografiche (GB EST ed GB OVEST) del	2366128, 5105369				
baricentro della superficie di trasformazione S oppure dei					
baricentri dei sottobacini nel caso di superfici di					
trasformazione molo ampie e complesse) per la quale viene					
fatta l'analisi pluviometrica (da applicativo RainMap FVG)					
Coefficienti della curva di possibilità pluviometrica (Tr=50	a= 106.4 n= 0.27 n' =0.37				
anni, da applicativo RainMap FVG): a (mm/oran), n, n'					
Estensione della superficie di riferimento S espressa in ha	0.5136				
Quota altimetrica media della superficie S (+ mslmm)	127				
Valori coefficiente afflusso Y medio ANTE OPERAM (%)	0.3				
Valori coefficiente afflusso Ymedio POST OPERAM (%)	0.6				
Livello di significatività della trasformazione ai sensi dell'art.5	MEDIO				
Portata unitaria massima ammessa allo scarico	QU=235I/s *ha				
(l/s · ha) e portata totale massima ammessa allo scarico	QT=0.121 mc /s				
(m3/s) dal sistema di drenaggio ai fini del rispetto					
dell'invarianza idraulica					
Descrizione delle misure compensative proposte					
Metodo idrologico-idraulico utilizzato per il	METODO CINEMATICO				
calcolo dei volumi compensativi					
Volume di invaso ottenuto con il metodo	77 MC				
idrologico-idraulico utilizzato (m3)					
Volume di invaso di progetto ovvero volume che si intende	77 MC				
adottare per la progettazione (m3)	,,,,,,				
Dispositivi di compensazione	Fossati e canaline,				
·	Fossati e canaline. Eventualmente pozzi di				
Dispositivi idraulici	•				
	dispersione.				
Portata massima di scarico di progetto del sistema ed	La portata può essere dispersa nel				
indicazione della tipologia del manufatto di scarico	sottosuolo tramite fossato.				
Buone pratiche costruttive/buone pratiche	L'intervento, evitando inutili superfici				
agricole	impermeabili, prevedrà la realizzazione di				
	pozzi di dispersione e di fossati e canaline				
	che permettono sia la dispersione che di				
	disporre di un volume volano.				
Descrizione complessiva dell'intervento di	L'intervento consta nell'individuazione di una				
mitigazione (opere di raccolta, convogliamento, invaso,	nuova area industriale. Le acque verranno				
infiltrazione e scarico) a seguito della proposta	possibilmente raccolte per un riutilizzo.				
trasformazione con riferimento al piano	E' stata calcolata la possibilità di utilizzare un				
di manutenzione delle opere	fossato come volume volano e dispersore.				
NOTE					
	<u> </u>				

13. AREA 9 LIVELLO DI SIGNIFICATIVITA' MODERATO

AREA	DA	A	NOTE	MQ	ψPRE	ψPOST
9	D2	Viabilità		4643	0.6	0.9

METODO DEL SERBATOIO LINEARE

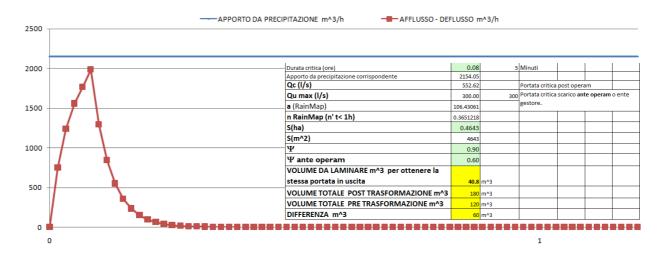
Tale procedura si basa sull'ipotesi che il bacino a monte dell'invaso di laminazione si comporti come un invaso lineare e quindi che le portate in ingresso possano essere stimate mediante il modello dell'invaso.

Sono applicati degli ietogrammi netti di pioggia ad intensità costante

L'equazione che regge il funzionamento del serbatoio è quella di continuità.

$$p dt - q dt = dW$$

Afflusso:


Deflusso:

$$q(t) = p \left(1 - e^{-\frac{t}{k}}\right) + q_0 e^{-\frac{t}{k}}$$

$$q(t) = q * e^{-\frac{t - t_p}{k}}$$

L'area sottesa dalla curva corrisponde al volume totale della precipitazione ed è corrispondente a quanto calcolato con il metodo delle sole piogge.

Lo svuotamento dell'invaso di laminazione a portata costante Qu max durante la fase di colmo (laminazione ottimale).

Il volume da laminare considerando un coefficiente udometrico di 300 l/s risulta pari a 40.8 mc

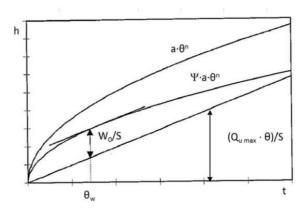
METODO DELLE SOLE PIOGGE

Tale modello si basa sul confronto tra la curva cumulata delle portate entranti e quella delle portate uscenti ipotizzando che sia trascurabile l'effetto della trasformazione afflussi-deflussi operata dal bacino e dalla rete drenante. In genere questo approccio tende pertanto a produrre valori cautelativi. Nelle condizioni sopra descritte, applicando uno ietogramma netto di pioggia ad intensità costante, il volume entrante prodotto dal bacino scolante risulta pari a:

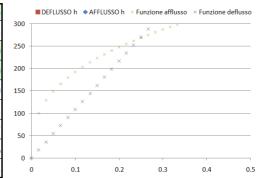
Volume entrante

 $W_s = S \cdot \Psi \cdot a \cdot \theta^n$

Volume uscente


 $W_u = Q_{u, max} \cdot \theta$

S = superficie di riferimento


Ψ = coeff. di afflusso POST OPERAM

a, n = coeff.ti della curva di possibilità pluviometrica

 θ = durata critica della pioggia

Superficie di riferimento (Ha)	0.46
Superficie di riferimento (m^2)	4643
Coefficiente di afflusso post operam	0.90
Portata massima deflusso (I/s)	300.00
Tempo di ritorno (anni)	200.00
a=	106.43
n=	0.37
Volume massimo (m^3)	94.96
Durata critica della pioggia (h)	0.05

Risultati

Il volume massimo da destinarsi a laminazione risulta pari a 95 mc.

Trattandosi di una strada in cui i tempi di corrivazione sono molto ridotti tale metodo di calcolo risulta preferibile rispetto ad altri .

SCHEMA DISPERSORE

Il calcolo delle geometrie viene semplificato per adattarsi alle approssimazioni nella realizzazione di questo tipo di dispersore.

Per motivi di sicurezza si prevede di impostare la profondità massima del fossato a un metro.

E' previsto un fossato dispersore dalla lunghezza di 150 metri e dalla profondità massima di 1 m.

L'eventuale volume da destinare alle acque di prima pioggia potrà essere sottratto ai volumi computati.

l lunghezza	150	m
b larghezza	2	m
t profondità	1	m
h altezza massima	1	m
M strato imp.	1	m
Volume	300	mc
Superficie	300.0	mq
K coefficiente di permeabilità terreno	1.00E-03	m/s
Capacità di infiltrazione	300.0	I/s

Figura 11 Schema dispersore

L'effettiva geometria potrà variare in sede di progettazione garantendo i volumi e la superficie del fondo del fossato calcolati.

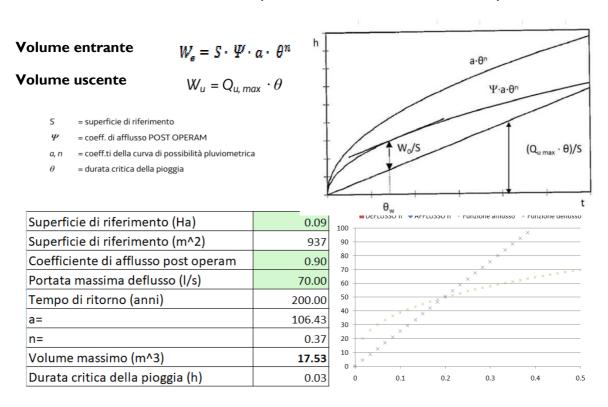
Nelle tratte in cui fosse presente del terreno limoso- argilloso a profondità superiori al metro questo dovrà essere scavato e sostituito col materiale ghiaioso presente nella maggior parte del lotto.

Come per i fossati la pendenza delle sponde dipende dalla composizione dei terreni, dall'inerbimento e dall'eventuale utilizzo di geotessuti.

AREA 9 TABELLA RIASSUNTIVA DI COMPATIBILITA' IDRAULICA

AREA 9 TABELLA RIASSUNTIVA DI COMPAT	
Tabella riassuntiva di compatibilità idraulica da app	
Descrizione della trasformazione oggetto dello Nome della trasformazione e sua descrizione	AREA 9 - Variante PIP Zona D2
	Area Industriale San Andrea - Coseano -Udine
Località, Comune, Provincia	
Tipologia della trasformazione	Area 9 da D2 Viabilità
Presenza di altri pareri precedenti relativamente	No
all'invarianza idraulica sulla proposta trasformazione	
Descrizione delle caratteristiche dei luoghi	
Bacino idrografico di riferimento	Corno
Presenza di eventuali vincoli PAI – PGRA che interessano, in	Nessuno
parte o totalmente, la superficie di trasformazione S	
Sistema di drenaggio esistente	Fossi e canaline.
Sistema di drenaggio di valle	Torrente Corno
Ente gestore	Consorzio di Bonifica Pianura Friulana
Valutazione delle caratteristiche dei luoghi ai fini della d	eterminazione delle misure compensative
Coordinate geografiche (GB EST ed GB OVEST) del	2366128, 5105369
baricentro della superficie di trasformazione S oppure dei	
baricentri dei sottobacini nel caso di superfici di	
trasformazione molo ampie e complesse) per la quale viene	
fatta l'analisi pluviometrica (da applicativo RainMap FVG).	
Coefficienti della curva di possibilità pluviometrica (Tr=50	a= 106.4 n= 0.27 n' =0.37
anni, da applicativo RainMap FVG): a (mm/oran), n, n'	
Estensione della superficie di riferimento S espressa in ha	0. 4643
Quota altimetrica media della superficie S (+ mslmm)	127
Valori coefficiente afflusso Y medio ANTE OPERAM (%)	0.6
Valori coefficiente afflusso Ymedio POST OPERAM (%)	0.9
Livello di significatività della trasformazione ai sensi dell'art.5	MODERATO
Portata unitaria massima ammessa allo scarico	QU=646 l/s *ha
(l/s · ha) e portata totale massima ammessa allo scarico	QT=0.300 mc/s
(m3/s) dal sistema di drenaggio ai fini del rispetto	
dell'invarianza idraulica	
Descrizione delle misure compensative proposte	
Metodo idrologico-idraulico utilizzato per il	METODO SOLE PIOGGE
calcolo dei volumi compensativi	
Volume di invaso ottenuto con il metodo	95MC
idrologico-idraulico utilizzato (m3)	
Volume di invaso di progetto ovvero volume che si intende	95 MC
adottare per la progettazione (m3)	75 1 10
Dispositivi di compensazione	Fossati e canaline,
Dispositivi idraulici	*
Dispositivi idraulici	Fossati e canaline. Eventualmente pozzi di
	dispersione.
Portata massima di scarico di progetto del sistema ed	La portata può essere dispersa nel
indicazione della tipologia del manufatto di scarico	sottosuolo tramite fossato.
Buone pratiche costruttive/buone pratiche	L'intervento, evitando inutili superfici
agricole	impermeabili, prevedrà la realizzazione di
	pozzi di dispersione e di fossati e canaline
	che permettono sia la dispersione che di
	disporre di un volume volano.
Descrizione complessiva dell'intervento di	L'intervento consta nel proseguimento di
mitigazione (opere di raccolta, convogliamento, invaso,	una strada. Gli eventuali parcheggi dovranno
infiltrazione e scarico) a seguito della proposta	essere realizzati con impiego di buone
trasformazione con riferimento al piano	tecniche costruttive.
di manutenzione delle opere	
NOTE	
-	**

14. AREA 10 LIVELLO DI SIGNIFICATIVITA' CONTENUTO


La modifica consiste nell'ampliamento di un incrocio con una superficie inferiore ai 1000mq.

AREA	DA	A	NOTE	MQ	ψPRE	ψPOST
10	D2	Viabilità		937	0.6	0.9

Nonostante non sia obbligatorio il calcolo dei volumi di invaso trattandosi di un ampliamento di un incrocio a raso viene di seguito ipotizzato un volume di laminazione adatto a fare infiltrare le acque prodotte dalla trasformazione.

METODO DELLE SOLE PIOGGE

Tale modello si basa sul confronto tra la curva cumulata delle portate entranti e quella delle portate uscenti ipotizzando che sia trascurabile l'effetto della trasformazione afflussi-deflussi operata dal bacino e dalla rete drenante. In genere questo approccio tende pertanto a produrre valori cautelativi. Nelle condizioni sopra descritte, applicando uno ietogramma netto di pioggia ad intensità costante, il volume entrante prodotto dal bacino scolante risulta pari a:

Risultati

Il volume massimo da destinarsi a laminazione risulta pari a 18 mc.

SCHEMA VOLUME DI LAMINAZIONE - DISPERSORE

Il calcolo delle geometrie viene semplificato per adattarsi alle approssimazioni nella realizzazione di questo tipo di dispersore.

Per motivi di sicurezza si prevede di impostare la profondità massima del fossato a un metro.

E' previsto un fossato dispersore dalla lunghezza di 50 metri e dalla profondità massima di 1 m.

L'eventuale volume da destinare alle acque di prima pioggia potrà essere sottratto ai volumi computati.

l lunghezza	50	m
b larghezza	1.5	m
t profondità	1	m
h altezza massima	1	m
M strato imp.	1	m
Volume	75	mc
Superficie	75.0	mq
K coefficiente di permeabilità terreno	1.00E-03	m/s
Capacità di infiltrazione	75.0	I/s

Figura 12 Schema dispersore

L'effettiva geometria potrà variare in sede di progettazione garantendo i volumi e la superficie del fondo del fossato calcolati.

Nelle tratte in cui fosse presente del terreno limoso- argilloso a profondità superiori al metro questo dovrà essere scavato e sostituito col materiale ghiaioso presente nella maggior parte del lotto.

Come per i fossati la pendenza delle sponde dipende dalla composizione dei terreni, dall'inerbimento e dall'eventuale utilizzo di geotessuti.

AREA 10 TABELLA RIASSUNTIVA DI COMPATIBILITA' IDRAULICA

AREA IU TABELLA RIASSONTIVA DI COMPATIBILITA IDRAULICA					
Tabella riassuntiva di compatibilità idraulica da app					
Descrizione della trasformazione oggetto dello					
Nome della trasformazione e sua descrizione	AREA 10 - Variante PIP Zona D2				
Località, Comune, Provincia	Area Industriale San Andrea - Coseano -Udine				
Tipologia della trasformazione	Area 10 da D2 a Viabilità				
Presenza di altri pareri precedenti relativamente	No				
all'invarianza idraulica sulla proposta trasformazione					
Descrizione delle caratteristiche dei luoghi					
Bacino idrografico di riferimento	Corno				
Presenza di eventuali vincoli PAI – PGRA che interessano, in	Nessuno				
parte o totalmente, la superficie di trasformazione S					
Sistema di drenaggio esistente	Fossi e canaline.				
Sistema di drenaggio di valle	Torrente Corno				
Ente gestore	Consorzio di Bonifica Pianura Friulana				
Valutazione delle caratteristiche dei luoghi ai fini della d	eterminazione delle misure compensative				
Coordinate geografiche (GB EST ed GB OVEST) del	2366128, 5105369				
baricentro della superficie di trasformazione S oppure dei	·				
baricentri dei sottobacini nel caso di superfici di					
trasformazione molo ampie e complesse) per la quale viene					
fatta l'analisi pluviometrica (da applicativo RainMap FVG).					
Coefficienti della curva di possibilità pluviometrica (Tr=50	a= 106.4 n= 0.27 n' =0.37				
anni, da applicativo RainMap FVG): a (mm/oran), n, n'					
Estensione della superficie di riferimento S espressa in ha	0. 0937				
Quota altimetrica media della superficie S (+ mslmm)	126				
Valori coefficiente afflusso Y medio ANTE OPERAM (%)	0.6				
Valori coefficiente afflusso Ymedio POST OPERAM (%)	0.9				
Livello di significatività della trasformazione ai sensi dell'art.5	CONTENUTO				
Portata unitaria massima ammessa allo scarico	QU=747 I/s *ha				
(l/s · ha) e portata totale massima ammessa allo scarico	QT=0.07 mc /s				
(m3/s) dal sistema di drenaggio ai fini del rispetto	Q1 0.07 IIIC70				
dell'invarianza idraulica					
Descrizione delle misure compensative proposte					
Metodo idrologico-idraulico utilizzato per il	METODO SOLE PIOGGE				
calcolo dei volumi compensativi					
Volume di invaso ottenuto con il metodo	18 MC				
idrologico-idraulico utilizzato (m3)					
Volume di invaso di progetto ovvero volume che si intende	18 MC				
adottare per la progettazione (m3)	10116				
Dispositivi di compensazione	Fossati e canaline,				
	,				
Dispositivi idraulici	Fossati e canaline. Eventualmente pozzi di				
	dispersione.				
Portata massima di scarico di progetto del sistema ed	La portata può essere dispersa nel				
indicazione della tipologia del manufatto di scarico	sottosuolo tramite fossato.				
Buone pratiche costruttive/buone pratiche	L'intervento, evitando inutili superfici				
agricole	impermeabili, prevedrà la realizzazione di				
	pozzi di dispersione e di fossati e canaline				
	che permettono sia la dispersione che di				
	disporre di un volume volano.				
Descrizione complessiva dell'intervento di	L'intervento consta nel'ampliamento di un				
mitigazione (opere di raccolta, convogliamento, invaso,	incrocio.				
infiltrazione e scarico) a seguito della proposta					
trasformazione con riferimento al piano					
di manutenzione delle opere					
NOTE					

STUDIO DI INVARIANZA IDRAULICA - COMUNE DI COSEANO - PIANO INSEDIAMETI PRODUTTIVI

15. CONCLUSIONI

Si è potuto valutare che la maggior parte delle modifiche non comportino un aumento dei

coefficienti di afflusso mentre è stato studiato il comportamento di quattro modiche che

prevedono una maggior impermeabilizzazione.

In generale, considerata la buona permeabilità dei terreni, l'elevata profondità della falda e

l'assenza di un reticolo idrografico, la soluzione più adatta alla compensazione degli interventi

in variante è la dispersione nel sottosuolo realizzabile con dei fossati o delle cunette filtranti in

modo da ottenere una elevata superficie di dispersione ed un buon volume di laminazione.

Il riutilizzo dell'acqua di precipitazione accumulata rimane una priorità quando le condizioni lo

consentano.

Enrico Massolino – Geologo Tel 3406184630 Via Settefontane 29 34141 Trieste P.IVA. 01137470322 enrico.massolino@gmail.com www.studiomassolino.com

29